Paper for the thematic issue of Survey in Geophysics on «Hydrology from space»


A. V. Kouraev1,2, M.N. Shimaraev3, P.I. Buharizin4, M.A. Naumenko5
J-F. Crétaux1, N. Mognard1, B. Legrésy1, F. Rémy1

1) Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Toulouse, France

2) State Oceanography Institute, St. Petersburg branch, Russia

3) Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia

4) Astrakhan expedition base of the Water Problems Institute of Russian Academy of Sciences, Dept. of Engineering Ecology, Astrakhan, Russia;

5) Institute of Limnology of Russian Academy of Sciences, ST. Petersburg, Russia



We show how the studies of ice cover of continental water bodies can benefit from the synergy of more than 15 years-long simultaneous active (radar altimeter) and passive (radiometer) observations from radar altimetric satellites (TOPEX/Poseidon, Jason-1, ENVISAT and Geosat Follow-On) and how this approach can be complemented by SSM/I passive microwave data to improve spatial resolution. Five largest Eurasian continental water bodies — Caspian and Aral seas, Baikal, Ladoga and Onega lakes are selected as examples. First we provide an overview of ice regime and history of ice studies for these seas and lakes. Then a summary of the existing state of the art of ice discrimination methodology from altimetric observations and SSM/I is given. The drawbacks and benefits of each type of sensor and particularities of radiometric properties for each of the chosen water bodies are discussed. Influence of sensor footprint size, ice roughness and snow cover on satellite measures is also addressed. A step-by-step ice discrimination approach based on a combined use of the data from the four altimetric missions and SSM/I is presented, as well as the results of validation of this approach using in situ and independent satellite data in the visible range. The potential for measurement of snow depth from passive microwave observations using both altimeters and SSM/I is addressed and a qualitative comparison of in situ snow depth observations and satellite-derived estimates is made.


radar altimetry, radiometry, ice and snow cover, Caspian sea, Aral sea, Lake Baikal, Lake Onega, Lake Ladoga


Many boreal continental water bodies have seasonal ice cover. In this work we address ice conditions in five largest Eurasian continental water bodies — Caspian and Aral seas, Baikal, Ladoga and Onega lakes (Figure 1) that every year are covered by ice for several months. Ice cover dramatically affects energy exchange between water and atmosphere, hydrophysical and hydrobiological processes in these seas and lakes. Living conditions of endemic mammals, such as Baikal and Caspian seals, that use ice to pup, nurse, mate and molt [Pastukhov, 1993; Kouraev et al., 2004a, 2007a], strongly depend on ice conditions. Ice dynamics influences transport and navigation, fisheries and other industrial activities, such as Russian and Kazakh oil prospecting rigs operating on the Northern Caspian shelf. Temporal and spatial variability of ice processes in these seas and lakes is influenced by meteorological conditions (mainly by thermal regime), but also by wind and currents, bottom morphology and other factors. Studies and monitoring of ice cover conditions are thus providing valuable information for climate research, maritime safety and sustainable environmental management.

Read a full text publicaton in PDF…



We are grateful for the Center for Topographic studies of the Oceans and Hydrosphere (CTOH) at LEGOS, Toulouse, France for provision of the altimetric and radiometric data. The research has been partly supported by the AICSEX (Arctic Ice Cover Simulation Experiment) Project of the 5th framework program of the European Commission and RFBR (Russian Foundation for Basic Research) Grants No. 04-05-64839 and 03-05-64226. Any other projects?



Aladin N, J-F Crétaux, I. S. Plotnikov, Kouraev A. V., A. O. Smurov, A. Cazenave, A. N. Egorov, F. Papa. «Modern hydro-biological state of the Small Aral Sea». Environmetrics, 2005, 16(4), pp 375-392
Armstrong, R.L., Knowles, K.W. , Brodzik, M.J. & Hardman, M.A. (1994, updated 2003). DMSP SSM/I Pathfinder daily EASE-Grid brightness temperatures». National Snow and Ice Data Center. Digital media and CD-ROM. Boulder, CO.
Atlas of the Lake Baikal. (1993). Russian Academy of Sciences, Siberian branch. Moscow: Federal Service of geodesy and cartography 160 pp. (In Russian).
Belchansky, G.I., & Douglas, D.C. (2000). Classification methods for monitoring Arctic sea ice using Okean passive/active two-channel microwave data. J. Remote Sens. Environ. 73, 307-322.
Belchansky, G.I., & Douglas, D.C. (2002). Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data. J. Remote Sens. Environ. 81, 67-81.
Birkett C. Contribution of the Topex NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resources Res. 34, 1223-1239, 1998
Bortnik V. N. and S. P. Chistyayeva, Eds., Gidrometeorologiya i Gidrohimiya Morey (Hydrometeorology and Hydrochemistry of Seas). Leningrad, Russia: Gidrometeoizdat, 1990, vol. VII, Aral Sea.
Buharizin, P. I., Vasyanin, M. F. & Kalinichenko, L. A. 1992: Metod kratkosrochnogo prognoza polozheniya kromki splochen nyh ldov na Severnom Kaspii. (A method for short-term forecasting of the pack ice boundary in the northern Caspian.) Meteorologiya i gidrologiya (Meteor-ology and Hydrology) 4, 74–81. Moscow.
Burns, B.A., Cavalieri, D.J., Keller, M.R., Campbell, W.J., Grenfell, T.C., Maykut, G.A., Gloersen, P. (1987). Multisensor comparison of ice concentration estimates in the marginal ice zone. Journal of geophysical research, Vol. 92, No. C7, 6843- 6856
Cavalieri D.J. accessed 2008. NASA Team Sea Ice Algorithm.
Cavalieri, D.J., Burns, B.A., & Onstott, R.G. (1990). Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data. J. Geophys. Res., Vol 95, No C4, 5359–5369.
Cavalieri, D.J., Parkinson C.L., Gloersen P., Comiso J.C., and Zwally H.J. (1999), Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res., Vol. 104, No. C7, 15803-15814
Cazenave A., Bonnefond P., Dominh K., Shaeffer P. Caspian sea level from Topex-Poseidon altimetry: level now falling. Geophys. Res. Lett. 24, 881-884.
Chizhov A.N., Borodulin V.V. Kharakteristika prostranstvennogo raspredeleniya tolshiny l’da na Ladozhskom ozere po materialam radiolokazionnoy syemki. (Spatial distribution of ice thickness on Lake Ladoga using radar surveys). Trudy GGI — Proceedings of the State Hydrological Institute, issue 299, Leningrad, 1984. pp. 36-47.
Comiso, J.C. (1986). Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res., vol. 91, 975-994.
Crétaux J. F. and Birkett S., Surface waters from space: lakes. Geosciences Comptes Rendus, Académie des sciences, Thematic issue ‘Observing the Earth from space’, 2006, 1098-1112.
Crétaux, J-F, A.V. Kouraev, F. Papa, M.Bergé-Nguyen, A. Cazenave, N. Aladin, I.S. Plotnikov. «Water balance of the Big Aral Sea from satellite remote sensing and in situ observations». Journal of Great Lakes Research, 2005, 31(4), p. 520-534.
de Oliveira Campos, Ilce et al. Temporal variations of river basin water from TOPEX/Poseidon satellite altimetry. Application to the Amazon basin. Comptes Rendus de l’Academie des Sciences, Serie II, Sciences de la Terre et des planetes, 333, 1-11, 2001
Emery, W. J., Fowler, C., & Maslanik, J. (1994). Arctic sea ice concentra-tions from special sensor microwave imager and advanced very high resolution radiometer satellite data. Journal of Geophysical Research, 99, 18329-18342.
Fetterer F. M., M. R. Drinkwater, K. C. Jezek, S. W. C. Laxon, R. G. Onstott, and L. M. H. Ulander, “Sea ice altimetry,” in Microwave Remote Sensing of Sea Ice, Geophysical Monograph, F. D. Carsey, Ed. Washington, DC: AGU, 1992, vol. 68.
Galaziy, G. I. (1987). Baikal in questions and answers.Irkutsk: Eastern-Siberian publishing (In Russian). (3), 1387-1398.
Ginzburg, A.I., Kostianoy, A.G., Sheremet, N.A., 2003. Thermal regime of the Aral Sea in the modern period (1982-2000) as revealed by satellite data. J. Marine Systems. V.43, 19-30.
Granin, N.G., Jewson, D.H., Grachev, M.A., Levin, L.A., Zhdanov, A.A., Averin, Gnatovsky, R.Yu., Gorbunova, L.A., Tcekhanovsky, V.V., Doroshenko, L.M., Minko, N.P. (1999). Turbulent mixing in the water layer just below the ice and its role in development of diatomic algae in Lake Baikal. Doklady Akademii Nauk, 366, 835-839.
Hvorov, G. V. & G. N. Utin (eds), 2002. Atlas of Lake Ladoga. Limnology Institute of the Russian Academy of Science, Saint-Petersburg (in Russian).
IEP website: Institute of Environmental Physics, University of Bremen,, accessed February 2008.
Irkutsk RICC website,
Josberger, E.G. and N.M., Mognard, A passive microwave snow depth algorithm with a proxy for snow metamorphism, in Hydrol. Process., 16, 8, 1557-1568, 2002.
Kaleschke L., Lupkes, C., Vihma, T., Haarpaintner, J., Bochert, A., Hartmann, J., & Heygster, G. (2001). SSM/I Sea Ice Remote Sensing for Mesoscale Ocean-Atmosphere Interaction Analysis. Canadian Journal of Remote Sensing, Vol. 27, No. 5, 526-537.
Karetnikov S.G., Naumenko M.A. Recent trends in Lake Ladoga ice cover. 2008. Hydrobiologia, in press.
Kouraev A.V., A.G. Kostianoy, S.A. Lebedev. Aral Sea ice cover and sea level from satellite altimetry and radiometry (1992-2006). Journal of Marine Systems, 2008, submitted.
Kouraev A.V., Kostianoy A.G., Lebedev S.A. «Recent changes of sea level and ice cover in the Aral Sea derived from satellite data (1992-2006)». Journal of Marine Systems, 2008, submitted
Kouraev A.V., Papa F., Buharizin P.I, Cazenave A, Crétaux J-F, Dozortseva J, and Remy F., «Ice cover variability in the Caspian and Aral seas from active and passive satellite microwave data». Polar Research, Vol. 22, No 1, 2003, p. 43-50.
Kouraev A.V., Papa F., Mognard N.M., Buharizin P.I, Cazenave A, Crétaux J-F, Dozortseva J, and Remy F. Synergy of active and passive satellite microwave data for the study of first-year sea ice in the Caspian and Aral seas. IEEE Transactions on Geoscience and Remote Sensing (TGARS), vol. 42, No 10, October 2004a, pp. 2170-2176
Kouraev A.V., Papa F., Mognard N.M., Buharizin P.I, Cazenave A, Crétaux J-F, Dozortseva J, and Remy F. «Sea ice cover in the Caspian and Aral seas from historical and satellite data». Journal of Marine Systems, 47, 2004b, pp. 89-100
Kouraev A.V., S.V. Semovski, M.N.Shimaraev, N.M. Mognard, B. Legresy, F. Remy. «Observations of lake Baikal ice from satellite altimetry and radiometry». Remote Sensing of Environment, 2007a, Vol. 108, issue 3, pp. 240-253
Kouraev A.V., S.V. Semovski, M.N.Shimaraev, N.M. Mognard, B. Legresy, F. Remy. «Ice regime of lake Baikal from historical and satellite data: Influence of thermal and dynamic factors». Limnology and Oceanography, 2007b, 52(3), 1268-1286.
Kouraev A.V., Zakharova E.A., Samain O., Mognard-Campbell N., Cazenave A. «Ob’ river discharge from TOPEX/Poseidon satellite altimetry data», Remote Sensing of Environment, 93, 2004c, pp. 238-245
Kozhova, O.M., Izmest’eva, L.R. Eds. , 1998. Lake Baikal, Evolution and Biodiversity. Backhuys Publ., Leiden.
Krasnozhon, G. F. & Lyubomirova, K. S. 1987: Izucheniye ledovogo rezhima Severnogo Kaspiya po dannym meteorologicheskih sputnikov Zemli. (Study of ice cover in the northern Caspian from meteorological satellites.) Issle-dovaniye Zemli iz kosmosa (Study of Earth from Space) 5, 27–32. Moscow.
Laxon S., N. Peacock, and D. Smith, “High interannual variability of sea ice thickness in the Arctic region,” Nature, 2003, vol. 425, no. 6961, pp. 947–950.
Lebedev, V. V. & P. L. Medres, 1966. Ledovyi rezhim Ladozhskogo ozera po materialam aviarazvedok. Sbornik rabot Leningradskoi GMO 3: 135–182. (Lake Ladoga ice covers condition by the aircraft surveys data. In Russian.)
Legrésy, B., & Rémy, F. (1997). Altimetric observations of surface characteris-tics of the Antarctic ice sheet. Journal of Glaciology, 43(144), 265-275.
Livingstone, D. (1999) Ice break-up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and the North Atlantic Oscillation. Limnol Oceanogr 44, 1486–1497
Lobov A.L. Tsytsarin A.G., Perminov V.M. Formirovaniye poley osnovnyh gidrologo-gidrohimicheskih harakteristik v vodah Severnogo Kaspiya v ledoviy period (Formation of main hydrological and hydrochamical fields in the Northern Caspian during ice season. 1993. VINITY Deponent. 28.03.1993, N 2481-B93, 51 pp.
Mackay, A.W., Battarbee, R.W., Flower, R.J., Granin, N.G., Jewson, D.H., Ryves, D.B. & Sturm, M. (2003) Assessing the potential for developing internal diatom-based inference models in Lake Baikal. Limnology & Oceanography, 48, 1183-1192.
Mackay, A.W., Ryves, D.B., Battarbee, R.W., Flower, R.J., Jewson, D., Rioual, P. & Sturm, M. (2005). 1000 years of climate variability in central Asia: assessing the evidence using Lake Baikal diatom assemblages and the application of a diatom-inferred model of snow thickness. Global & Planetary Change, 46, 281-297.
Magnuson, J.J., Robertson D.M., Benson, B.J., Wynne, R.H., Livingstone, D.M., Arai, T., Assel,  R.A., Barry, R.G., Card, V., Kuusisto, E., Granin, N.G., Prowse, T.D., Stewart, K.M., & Vuglinski, V.S. (2000). Historical Trends in Lake and River Ice Cover in the Northern Hemisphere. Science, Vol 289, Issue 5485, 1743-1746.
Maheu C., Cazenave A., Mechoso R. Water level fluctuations in the La Plata basin (South America) from Topex/Poseidon altimetry. Geophys. Res. Lett, 30,3,2003.
Marcus T. and D. J. Cavalieri, “Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data,” in Antarctic Sea Ice: Physical Processes, Interactions and Variability, M. O. Jeffries, Ed. Washington, DC: AGU, 1998, vol. 74, Antarctic Research Series, pp. 19–39.
Markus, T., & D.J. Cavalieri. (2000). An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geophys. Remote Sens., 38 (3), 1387-1398.
Medres, P. L., 1957. Ledovyi rezhim Ladozhskogo ozera po materialam aviarazvedok. Trudy GGI,  Gidrometeoizdat, Leningrad, 66: 92–140. (Lake Ladoga ice cover conditions by the aircraft surveys data. In Russian.)
Mercier F., Cazenave A., Maheu C. Interannual lake level fluctuations in Africa from Topex/Poseidon: connections with ocean-atmosphere interactions over the Indian ocean. Global and Planet. Change, 32, 141-163, 2002
Mognard, N.M. and E.G. Josberger, Northern Great Plains 1996/97 seasonal evolution of snowpack parameters  from satellite passive microwave measurements, Ann. Glaciol., 34, 15-23, 2002.
Papa F., B. Legresy,  N. Mognard,  E.G. Josberger, F. Remy. «Estimating terrestrial snow depth with the TOPEX/Poseidon altimeter and radiometer». IEEE Trans. Geosci. Remote Sens. 2002, 40, pp. 2162–2169.
Papa F., B. Legresy, N. Mognard, E. G. Josberger, and F. Remy, “Estimating terrestrial snow depth with the TOPEX/Poseidon altimeter and radiometer,” IEEE Trans. Geosci. Remote Sensing, vol. 40, pp. 2162–2169, Oct. 2002.
Pastukhov V.D. «Baikal’s seal» /»Nerpa Baikala», Nauka, Novosibirsk, 1993, 271 pp
Ponchaut, F. and Cazenave, A. Continental lake level variations from TOPEX/POSEIDON (1993-1996). Earth and Planetary Sciences, 326, 13–20. 1998
Semovski, S.V., & Mogilev, N.Yu.. (2003). Ice and snow cover of Lake Baikal — application of satellite imagery in investigating their dynamics, Nordic Hydrology, 34, 33-50.
Semovski, S.V., Mogilev, N.Yu., & Sherstyankin, P.P. (2000). Lake Baikal ice: analysis of AVHRR imagery and simulation of under-ice phytoplankton bloom. Journal of Marine Systems, 27, 117-130.
Semovski, S.V., Mogilev, N.Yu., & Sherstyankin, P.P. (2000). Lake Baikal ice: analysis of AVHRR imagery and simulation of under-ice phytoplankton bloom. Journal of Marine Systems, 27, 117-130.
Sherstyankin, P.P. (1975) Experimental investigations of the lake Baikal under-ice light field, Moscow, Nauka, (in Russian).
Shimaraev, M.N., Domysheva, V.M., Sinyukovich, V.N., Kuimova, L.N., & Troitskaya, E.S. (2003). Manifestation of global climatic changes in Lake Baikal during the 20th century. In «Proceedings of the 7th Workshop on physical processes in natural waters 2-5 Yuly 2003. Petrozavodsk, Russia» (pp. 161-164). Petrozavodsk.
Shimaraev, M.N., Kuimova, L.N., Sinyukovich, V.N., & Tsekhanovskii, V.V. 2002b. Climate and hydrological processes in the basin of Lake Baikal in the XXth century. Meteorology and Hydrology, 3, 71-78, in Russian.
Spreen, G., L. Kaleschke, and G. Heygster Operational sea ice remote sensing with AMSR-E 89 GHZ Channels, IEEE International Geoscience and Remote Sensing Symposium Proceedings, IEEE 6, 4033-4036, 2005
Spreen, G., L. Kaleschke, and G. Heygster, Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophys. Res., 2008 doi:10.1029/2005JC003384
Steffen, K., Key, J., Cavalieri, D.J., Comiso, J., Gloersen, P., St.Germain, K., & Rubinstein, I. (1992). The estimation of Geophysical parameters using passive microwave algorithms. In Carsey F.D. (Ed), Microwave Remote Sensing of Sea Ice, AGU: Geophysical Monograph 68.
Stepanova V.A. Ledoviy rezhim Onezhskogo ozera i metody ego prognosa. (Ice regime of Lake Ladoga and methods for its forecast). Trudy GGI — Proceedings of the State Hydrological Institute, Leningrad, 1962, issue 80, pp. 66-125
Svendsen, E., Mätzler, C., & Grenfell, T. C. (1987). A model for retrieving total sea ice concentration from spaceborne dual-polarised passive microwave instrument operating near 90 GHz. Int. J. Remote Sensing, 8, 10, 1479-1487.
Swift, C. T. & Cavalieri, D. J. (1985). Passive microwave remote sensing for sea ice research. EOS. 66(49), 1210-1212
Terziev F.S., A. N. Kosarev, and A. A. Kerimov, Eds., Gidrometeorologiya i Gidrohimiya Morey (Hydrometeorology and Hydrochemistry of Seas). St.-Petersburg, Russia: Gidrometeoizdat, 1992, vol. VI, Caspian sea, Issue 1—Hydrometeorological Conditions.
The INTAS Project 99-1669 Team (2002). A new bathymetric map of Lake Baikal. Open-File Report on CD-ROM.
Todd, M.C., & Mackay, A.W. (2003). Large-Scale Climatic Controls on Lake Baikal Ice Cover. Journal of Climate Volume: Vol 16, 19, 3186-3199
Tsytsarin A., A. Skorokhod, L. Lissitsyna. 1999 Spatial Variability of Ionic Ratios Enclosed Sea Ice, Meteorology and Hydrology, N1, pp. 84-93 (in Russian).
Tsytsarin A.G., Gorelkin N.E., Nurbaev D.D. Aspekty zimnego gidrologicheskogo rezhima Aral’skogo morya i fiziko-himicheskiye svoystva l’da (Aspects of winter hydrological regime of the Aral sea and physical and chemical properties of ice. Moscow, 1993. 29 pp. VINITY Deponent. 22 Jan 1993, N 139-B93
Tsyzarin A.G. Solevoy i biogenniy sostav l’da i podlednoy vody Aral’skogo morya. (Salt and nutrients composition of the Aral sea ice and sub-ice water. Moscow, 1987. 24 pp. VINITY Deponent. 25 Dec 1987, N 9121-В87.
Ulaby, F.T., Moore, R.K. & Fung, A.K. (1986). Microwave remote sensing, Active and Passive, Vol. III, From theory to applications. Artech house, Inc.
Usachev, V. F., V. G. Prokacheva & V. V. Borodulin, 1985. Otsenka dinamiki ozernykh l’dov, snezhnogo pokrova i rechnykh razlivov distantsionnymi sredstvami. Gidrometeoizdat, Leningrad. 103 pp. (The lake ice dynamics, snow covering and river floods estimation by remote sensing. In Russian.)
Verbolov, V. I., Sokol’nikov, V. M., & Shimaraev, M. N. (1965). Hydrometeorological regime and heat balance of the Lake Baikal. Moscow-Leningrad: “Nauka…publishers 373 pp. (In Russian).
Wüest, A, Ravens, T.M., Granin, N.G., Kocsis, O., Schurter, M., & Sturm, M. (2005). Cold intrusions in Lake Baikal: Direct observational evidence for deep-water renewal. Limnol. Oceanogr, 50(1), 184–196.
Zakharova E.A., Kouraev A.V., Cazenave A, Seyler F. «Amazon river discharge estimated from Topex/Poseidon satellite water level measurements», Comptes Rendus — Geoscience, 2006, Vol 338, No 3, 188-196.
Запись опубликована в рубрике Работы, Статьи с метками , , , , , , . Добавьте в закладки постоянную ссылку.